If it's not what You are looking for type in the equation solver your own equation and let us solve it.
710x-12780x^2=)
We move all terms to the left:
710x-12780x^2-())=0
We add all the numbers together, and all the variables
-12780x^2+710x=0
a = -12780; b = 710; c = 0;
Δ = b2-4ac
Δ = 7102-4·(-12780)·0
Δ = 504100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{504100}=710$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(710)-710}{2*-12780}=\frac{-1420}{-25560} =1/18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(710)+710}{2*-12780}=\frac{0}{-25560} =0 $
| 2x/3x-2=-3/5 | | 4x-36/2+7x+3/4=32 | | -7y+8=23y-1 | | x-5*0=-5 | | 5.6g+10=1.3g+22 | | 2(7—8x)=32–10x | | 280=(x)/(2)+0.09x | | |2x-1|=3x+6 | | 0.44y=2.2 | | -2v-3=-17 | | b^2-b+87=9b | | 12+7x=-5x+144 | | 2x+3x+6x-2(x+3)=34 | | |x-5|+4=10 | | 4x-6*2+7x+3*4=32 | | 48+0.99=1.29x | | 108+274n=4n-42n^2 | | 8x+8=4(2x+1) | | 43n^2-69n+28=8n^2 | | 3(2x+11)=2(-3x+8) | | 49x^2-136x=7x^2-64 | | 63=(x+0.05x) | | 2k8(10−k)=2k8 | | 9p=-2p^2-2p-5 | | 2k8(10−k)=2k8, | | 90/(x-7)=30 | | 2n^2+15n-20=-3n^2 | | x/5-13=-11 | | 2x^2+2x-6=6 | | 10=c/3+c/6-4 | | 10x+2,5=15 | | -104=80c |